

StackFormation dev-master Documentation

[image: _images/stackformation_200px.png]
[image: Build Status] [https://travis-ci.org/AOEpeople/StackFormation] [image: Code Climate] [https://codeclimate.com/github/AOEpeople/StackFormation] [image: Test Coverage] [https://codeclimate.com/github/AOEpeople/StackFormation/coverage]

Lightweight AWS CloudFormation Stack, Template and Parameter Manager and Preprocessor

Deploying CloudFormation stacks to AWS can be done using the AWS Console, AWS Cli or any SDK. While this is perfectly ok it can be a challenge to keep track of what template is used for what stack and manage the input parameters.
This is where “StackFormation” comes in.

StackFormation (note the wordplay: CloudFormation / Stacks) will read blueprint.yml files that contains information about stacks, the templates they use and their input parameters. It also allows you to query values for input parameters from other stack’s resources or outputs.
In addition to that StackFormation makes it easy to embed scripts into UserData.

[image: _images/StackFormation.svg]If you have any questions please feel free to contact us:

	Fabrizio Branca [https://twitter.com/fbrnc]

	Julian Kleinhans [https://github.com/kj187]

This version of the documentation covering StackFormation dev-master has been rendered at: Feb 22, 2018

Getting started Documentation

	Getting Started
	Installation/Usage
	Via composer

	Via docker

	Using the phar

	Quickstart
	AWS access keys

	Create a blueprint

	Create a CloudFormation template

	Deploy your stack

	Kickstart a project
	Installation

	Required environment settings

	Short check

	Your first blueprint

	Deploy your stack

StackFormation Documentation

	Blueprints
	Structuring your blueprints

	Parameters
	Adding parameters

	Parameter values

	Conditional parameter values

	Wildcards

	Effective stackname

	Reverse blueprint match

	Forcing ENV vars

	Templates
	Template merging
	Prefixed template merging

	Inject Parameters

	Include file content

	Inject raw Json

	Using composer

	Comments

	Port

	Expand strings with {Ref:…}

	Stack references

	User data
	Inject user data

	Stack
	Stackname filter

	Stack policies
	Using stack policies

	Functions
	Fn::FileContent

	Fn::FileContentTrimLines

	Fn::FileContentMinify

	Fn::FileContentUnpretty

	Fn::Split

	File paths
	Relative file paths

	Shell commands
	Before

	After

	Before and after

	AWS Sdk

	Misc

User Documentation

	Contributing
	Contributors

License

Open Software License v. 3.0 (OSL-3.0) [https://github.com/AOEpeople/StackFormation/blob/master/LICENSE.md]

Getting Started

Installation/Usage

Via composer

Install composer [https://getcomposer.org/doc/00-intro.md#installation-linux-unix-osx] first, then:

$ composer require aoepeople/stackformation

Via docker

Example
.. code-block:: shell

$ docker run –rm -it -v $(pwd):/app -w /app kj187/stackformation:latest setup
$ docker run –rm -it -v $(pwd):/app -w /app kj187/stackformation:latest blueprint:deploy

Or if you use lambda with golang for instance

For more details, see https://hub.docker.com/r/kj187/stackformation/

Using the phar

Grab the latest release from https://github.com/AOEpeople/StackFormation/releases/latest or use this shortcut (requires jq to be installed)

$ wget $(curl -s https://api.github.com/repos/AOEpeople/StackFormation/releases/latest | jq -r '.assets[0].browser_download_url')

Tip

If you want to use StackFormation globally:

$ mv stackformation.phar /usr/local/bin/stackformation
$ chmod +x /usr/local/bin/stackformation

Quickstart

AWS access keys

Execute the setup command to add all necessary AWS env vars

$ vendor/bin/stackformation.php setup

Add it to your gitignore: echo .env.default >> .gitignore

Create a blueprint

Create a blueprints.yml in your project directory:

blueprints:
 - stackname: my-stack
 template: my-stack.template

Create a CloudFormation template

Create a CloudFormation template my-stack.template in your project directory:

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "MyResource1": { "Type": "AWS::CloudFormation::WaitConditionHandle" }
 }
}

Deploy your stack

$ bin/stackformation.php deploy my-stack

Kickstart a project

Imagine we are starting from scratch, on a so called green field.

$ mkdir DemoProject
$ cd DemoProject

Installation

First of all, we have to install StackFormation, for this demo we will da that via composer

$ composer require aoepeople/stackformation

Your first level project structure should be looking like that now

├── composer.json
├── composer.lock
└── vendor

To check if StackFormation is working properly execute the following command

$ vendor/bin/stackformation.php

You should see all available StackFormation commands and options now.

Required environment settings

Execute the setup command to add all necessary AWS env vars

$ vendor/bin/stackformation.php setup

Add it to your gitignore: echo .env.default >> .gitignore

Short check

If your access and secret key are correct and the user behind that have enough permissions, you are now able to use the whole magic of StackFormation. Just a quick example, you want to know what and how many ec2 instances are currently running?

$ vendor/bin/stackformation.php ec2:list

[image: ../_images/kickstart_demo_ec2list.png]

Your first blueprint

Create a blueprints.yml in your current directory:

blueprints:
 - stackname: my-stack
 template: my-stack.template

Create you CloudFormation template my-stack.template:

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "MyResource1": { "Type": "AWS::CloudFormation::WaitConditionHandle" }
 }
}

Deploy your stack

$ vendor/bin/stackformation.php deploy my-stack

The output should be the following

[image: ../_images/kickstart_demo_deploy.png]
$ vendor/bin/stackformation.php stack:list

[image: ../_images/kickstart_demo_stacklist.png]

Blueprints

[image: ../_images/overview.png]

Structuring your blueprints

Structure your blueprints including all templates and other files (e.g. userdata) in “modules”. StackFormation will load all stack.yml files from following locations:

	blueprints/*/*/*/blueprints.yml

	blueprints/*/*/blueprints.yml

	blueprints/*/blueprints.yml

	blueprints/blueprints.yml

	blueprints.yml

So it’s suggested to create a directory structure like this one:

blueprints/
 stack1/
 userdata/
 provisioning.sh
 blueprints.yml
 my.template
 stack2/
 blueprints.yml
 ...

All blueprints.yml files will be merged together.

Parameters

Adding parameters

Add parameters in your my-stack.template:

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Parameters: {
 "MyParameter1": { "Type": "String" }
 },
 "Resources": {
 "MyResource1": { "Type": "AWS::CloudFormation::WaitConditionHandle" }
 }
}

… and configure that parameter in the blueprint.yml file:

blueprints:
 - stackname: my-stack
 template: my-stack.template
 parameters:
 MyParameter1: 'Hello World'

Parameter values

	Parameter

	Syntax

	Result

	Output lookup

	{output:<stack>:<output>}

	Output value

	Resource lookup

	{resource:<stack>:<logicalResource>}

	Physical Id of that resource

	Parameter lookup

	{parameter:<stack>:<logicalResource>}

	Parameter value (note that some parameters will not be shown if they’re ‘no_echo’)

	Env var lookup

	{env:<var>}

	Value of environment variable var

	Env var lookup with fallback

	{env:<var>:<defaultValue>}

	Value of environment variable var falling back to defaultValue if env var is not set

	Stack/global variable lookup

	{var:<var>}

	Value variable var

	Current timestamp

	{tstamp}

	e.g. 1453151115

	MD5 sum

	{md5:<filename>}

	e.g. fdd747e9989440289dcfb476c75b4268

	Clean

	{clean:2.1.7}

	217 removes all characters that arent allowed in stack names

	Switch profile

	[profile:<profileName>:...]

	Will switch to a different profile and evaluate the second parameter there. This is useful in cross account setups

Output and resource lookup allow you to “connect” stacks to each other by wiring the output or resources created in one stack to the input parameters needed in another stack that sits on top of the first one without manually managing the input values.

Example

 blueprints:
 - stackname: stack1-db
 template: templates/stack1.template
 [...]
 - stackname: stack2-app
 template: templates/stack2.template
 parameters:
 build: 's3://{output:stack1:bucketName}/{env:BUILD}/build.tar.gz'
 db: '{output:stack1-db:DatabaseRds}'

Variables (global/local, nested into other placeholders)

 vars:
 KeyPair: 'mykeypair'

 blueprints:
 - stackname: mystack
 vars:
 ParentStack: 'MyParentStack'
 parameters:
 KeyPair: '{var:mykeypair}'
 Database: '{output:{var:ParentStack}:DatabaseRds}'
 [...]

Switch Profile Example (in this example an AMI is baked in a different account and shared with this account)

 blueprints:
 - stackname: mystack
 parameters:
 BaseAmi: '[profile:myDevAccountProfile:{output:bakestack:BaseAmi}]'

Conditional parameter values

You might end up deploying the same stacks to multiple environments or accounts. Instead of duplicating the blueprints (or using YAML reference) you’ll probably want to parameterize your blueprints like this

 blueprints:
 - stackname: 'app-{env:Environment}-build'
 template: 'build.template'
 parameters:
 KeyPair: 'MyKeyPair'
 [...]

… and then before deploying (locally or from your CI server) you’d set the env var first and then deploy:

$ export Environment=prod
$ vendor/bin/stackformation.php blueprint:deploy 'app-{env:Environment}-build'

But in many cases those stacks do have some minor differences in some of the parameters (e.g. different VPCs or KeyNames,…) You could solve it like this with nested placeholders:

 blueprints:
 - stackname: 'app-{env:Environment}-build'
 template: 'build.template'
 vars:
 prod-KeyName: MyProdKey
 stage-KeyName: MyStageKey
 parameters:
 KeyPair: '{var:{env:Environment}-KeyName}'

While this is perfectly possible this gets very confusing soon. Plus you’ll have to mention every variation of the variable explicitely.

Instead you can use a conditional value:

 blueprints:
 - stackname: 'app-{env:Environment}-build'
 template: 'build.template'
 parameters:
 KeyPair:
 '{env:Environment}==prod': MyProdKey
 '{env:Environment}==stage': MyStageKey
 '{env:Environment}~=/^dev[0-9]+$/': MyDevKey
 'default': MyDevKey

StackFormation will evaluate all keys from top to bottom and the first key that evaluates to true will be returned. Allowed conditions: - A==B - A!=B - A~=/^regex$/ - ‘default’ (will always evaluate to true. Make sure you put this at the very end since everything after this will be ignored). Placeholders will be resolved before the conditions are evaluated.

Wildcards

When referencing a stack in {output:<stack>:<output>}, {resource:<stack>:<logicalResource>}, or {parameter:<stack>:<logicalResource>} you can use a wildcard to specify a stack. In this case StackFormation looks up all live stacks and finds a stack matching the pattern. If there’s no stack or more than a single stack matching the pattern StackFormation will throw an exception. This feature is helpful when you know there’s always only a single stack of one type that has a placeholder in it’s stackname:

Example: Stackname: deployment-{env:BUILD_NUMBER} In blueprints.yml:

 blueprints:
 - stackname: mystack
 parameters:
 Elb: '{output:deployment-*:Elb}'

Effective stackname

You can include environment variable in your stackname (which is very handy for automation via Jenkins). In this case your effective stackname (e.g. build-5) will be different from the configured stackname (e.g. build-{env:BUILD_NUMBER})

Example

 blueprints:
 - stackname: 'build-{env:BUILD_NUMBER}'
 template: templates/deploy_build.template

Reverse blueprint match

Let’s say you have a blueprint ecom-{env:ACCOUNT}-{env:ENVIRONMENT}-static-stack and you want to deploy it with ACCOUNT=t and ENVIRONMENT=dpl. You would do this by setting the env vars ACCOUNT and ENVIRONMENT and then run the deploy command:

$ export ACCOUNT=t
$ export ENVIRONMENT=dpl
$ vendor/bin/stackformation.php deploy 'ecom-{env:ACCOUNT}-{env:ENVIRONMENT}-static-stack'

But instead you can also simply run the deploy command with the resulting stack name ecom-t-tst-static-stack StackFormation will then attempt to find a matching tag, determine which environments need to be set and run the original blueprint for you:

$ vendor/bin/stackformation.php deploy 'ecom-t-tst-static-stack'

Blueprint reverse match found: ecom-{env:ACCOUNT}-{env:ENVIRONMENT}-static-stack
With ENV vars: ACCOUNT=t; ENVIRONMENT=tst
Use this blueprint and set env vars? [y/N] y
Setting env var: ACCOUNT=t
Setting env var: ENVIRONMENT=tst
...

Forcing ENV vars

This will automatically set environment variables in the context of that stack.

 blueprints:
 - stackname: 'demo'
 env:
 ACCOUNT: t
 ENVIRONMENT: prod

Templates

Template merging

StackFormation allows you to configure more than one template:

 blueprints:
 - stackname: iam
 template:
 - iam_role_jenkins.template
 - iam_user_inspector.template
 description: 'IAM users and roles'

The template files cannot have duplicate keys in any of the top level attributes. StackFormation will then merge them into a single CloudFormation template and deploy this one instead. This feature helps you to structure your template logically without having to deploy and manage them separatly. Also with this you can choose which template to include in case you’re pulling in a StackFormation module like https://github.com/AOEpeople/cfn-lambdahelper.

You can always inspect the final merged and preprocessed template:

$ vendor/bin/stackformation.php stack:template iam

Prefixed template merging

If you list your templates with attributes instead of a plain list, the attribute keys will be used to prefix every element of that template. This way you can use the same template with different input parameters instead of duplicating resources. This comes in handy for VPC setups.

blueprints:
 - stackname: vpc-subnets
 template:
 ZoneA: az.template
 ZoneB: az.template
 parameters:
 ZoneAVpc: MyVPC
 ZoneAPublicSubnetCidrBlock: '10.0.0.0/24'
 ZoneAPrivateSubnetCidrBlock: '10.0.10.0/24'
 ZoneAAZ: 'eu-west-1a'
 ZoneBVpc: MyVPC
 ZoneBAPublicSubnetCidrBlock: '10.0.1.0/24'
 ZoneBPrivateSubnetCidrBlock: '10.0.11.0/24'
 ZoneBAZ: 'eu-west-1b'
 [...]

If you have a parameter that needs to be passed to all templates you can prefix it with ‘*’ (make sure you add quotes around that key since JSON will consider this a reference instead) and StackFormation will replace ‘*’ with each prefix used in the template: section.

 blueprints:
 - stackname: vpc-subnets
 template:
 ZoneA: az.template
 ZoneB: az.template
 parameters:
 '*Vpc': MyVPC # Will automatically be expanded to 'ZoneAVpc: MyVPC' and 'ZoneBVpc: MyVPC'
 '*Igw': MyInternetGateway
 ZoneAPublicSubnetCidrBlock: '10.0.0.0/24'
 ZoneAPrivateSubnetCidrBlock: '10.0.10.0/24'
 ZoneAAZ: 'eu-west-1a'
 ZoneBVpc: MyVPC
 ZoneBAPublicSubnetCidrBlock: '10.0.1.0/24'
 ZoneBPrivateSubnetCidrBlock: '10.0.11.0/24'
 ZoneBAZ: 'eu-west-1b'
 [...]

Inject Parameters

The scripts (included via Fn::FileContent) may contain references to other CloudFormation resources or parameters. Part of the pre-processing is to convert snippets like {Ref:MagentoWaitConditionHandle} or {Ref:AWS::Region} or {Fn::GetAtt:[resource,attribute]} (note the missing quotes!) into correct JSON snippets and embed them into the Fn::Join array.

Usage Example:

#!/usr/bin/env bash
/usr/local/bin/cfn-signal --exit-code $? '{Ref:WaitConditionHandle}'

will be converted to:

{"Fn::Join": ["", [
"#!\/usr\/bin\/env bash\n",
"\/usr\/local\/bin\/cfn-signal --exit-code $? '", {"Ref": "WaitConditionHandle"}, "'"
]]}

Usage Example:

#!/usr/bin/env bash
EIP="{Fn::GetAtt:[NatIp,AllocationId]}"

will be converted to:

{"Fn::Join": ["", [
"#!\/usr\/bin\/env bash\n",
"EIP=\"",
{
 "Fn::GetAtt": [
 "NatIp",
 "AllocationId"
]
},
"\"\n",
]]}

Include file content

You can include content from a different file into a script. Use this is you have duplicate code that you need to embed into multiple resource’s UserData:

Example:

 #!/usr/bin/env bash

 ###INCLUDE:../generic/includes/base.sh
 [...]

Inject raw Json

###JSON###
{ "hello": "world" }
######

Using composer

You can pull in StackFormation modules via composer. Look at the cfn-lambdahelper [https://github.com/AOEpeople/cfn-lambdahelper] for an example. A custom composer installer (configured as require dependency) will take care of putting all the module files in your blueprints/ directory. This way you can have project specific and generic modules next to each other.

Please note that a “StackFormation module” will probably not come with a blueprints.yml file since this (and especially the stack parameter configuration) is project specific.

You will need to create the stack configuration for the parts you want to use. A good place would be blueprints/blueprints.yml where you reference the imported module.

Example:

 blueprints:
 - stackname: 'lambdacfnhelpers-stack'
 template: 'cfn-lambdahelper/lambda_cfn_helpers.template'
 Capabilities: CAPABILITY_IAM

Comments

You can add comments to your JSON file. Due to a current bug you can’t have double quotes in your comment block.

Example:

{"IpProtocol": "tcp", "FromPort": "80", "ToPort": "80", "CidrIp": "1.2.3.4/32"}, /* Office */
{"IpProtocol": "tcp", "FromPort": "80", "ToPort": "80", "CidrIp": "5.6.7.8/32"}, /* Max Musterman HomeOffice */

Port

"Port":"..." will automatically expanded to "FromPort": "...", "ToPort": "...". So if you’re specifying a single port instead of a range of ports you can reduce the redundancy:

Example:

{"IpProtocol": "tcp", "Port": "80", "CidrIp": "1.2.3.4/32"},

/* expands to: */
{"IpProtocol": "tcp", "FromPort": "80", "ToPort": "80", "CidrIp": "1.2.3.4/32"},

Expand strings with {Ref:…}

Tired of concatenating strings with {"Fn::Join": ["", [manually? Just add the references in a string and StackFormation will expand this for you:

Example:

"Key": "Name", "Value": "magento-{Ref:Environment}-{Ref:Build}-instance"

/* will be replaced with: */
"Key": "Name", "Value": {"Fn::Join": ["", ["magento-", {"Ref":"Environment"}, "-", {"Ref":"Build"}, "-instance"]]}

Stack references

Referencing outputs/resources/parameters from other stacks

TODO

User data

Inject user data

TODO

Stack

Stackname filter

You can configure a regular expression in the STACKFORMATION_NAME_FILTER environment variable (e.g. via .env.default) which will filter all your stack lists to the stacks matching this pattern. This is useful if you have a naming convention in place and you don’t want to see other team’s stacks in your list.

Example:

STACKFORMATION_NAME_FILTER=/^myproject-(a|b)-/

Stack policies

Using stack policies

To prevent stack resources from being unintentionally updated or deleted during a stack update you can use stack policies [http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/protect-stack-resources.html]. Stack policies apply only during stack updates and should be used only as a fail-safe mechanism to prevent accidental updates to certain stack resources.

It’s suggested to create a stack_policies directory below the corresponding stack directory:

blueprints/
 stack1/
 stack_policies/
 blueprints.yml
 ...
 stack2/
 stack_policies/
 blueprints.yml
 ...
 ...

You have to tell StackFormation where it could find the stack policy.

Example:

blueprints:
 - stackname: 'my-stack'
 template: 'templates/my-stack.template'
 stackPolicy: 'stack_policies/my-stack.json'

Functions

Fn::FileContent

Before uploading CloudFormation template to the API there’s some pre-processing going on: I’ve introduced a new function “FileContent” that accepts a path to a file. This file will be read, converted into JSON (using Fn::Join). The path is relative to the path of the current CloudFormation template file.

Usage Example:

[...]
"UserData": {"Fn::Base64": {"Fn::FileContent":"../scripts/setup.sh"}},
[...]

Fn::FileContentTrimLines

These function are similar to Fn::FileContent but additional it trim whitespace. This comes in handy when deploying Lambda function where the content can’t be larger than 2048kb if you want to directly embed the source code via CloudFormation (instead of deploying a zip file).

Fn::FileContentMinify

These function are similar to Fn::FileContent but additional it minify the code. This comes in handy when deploying Lambda function where the content can’t be larger than 2048kb if you want to directly embed the source code via CloudFormation (instead of deploying a zip file).

Fn::FileContentUnpretty

This function is the same as Fn::FileContent expect it will return the resulting JSON without formatting it, which will reduce the file size significantly due to the missing whitespace in the JSON structure (not inside the file content!) This is useful if you’re seeing the “…at ‘templateBody’ failed to satisfy constraint: Member must have length less than or equal to 51200” error message.

Fn::Split

Sometimes you have a dynamic number of array items. Fn::Split allows you to configure them as a single string and transforms them into an array:

"Aliases": { "Fn::Split": [",", "www.example.com,cdn.example.com"]}

results in:

"Aliases": ["www.example.com", "cdn.example.com"]

File paths

Relative file paths

Please note that all files paths in the template section of a blueprints.yml are relative to the current blueprints.yml file and all files included via Fn::FileContent/ Fn:FileContentTrimLines or Fn:FileContentMinify are relative to the CloudFormation template file.

Example:

blueprints/
 stack1/
 userdata/
 provisioning.sh
 blueprints.yml
 my.template

blueprints.yml:

blueprints:
 - stackname: test
 template: my.template

my.template

{ [...]
 "Ec2Instance": {
 "Type": "AWS::AutoScaling::LaunchConfiguration",
 "Properties": {
 "UserData": {"Fn::Base64": {"Fn::FileContent": "userdata/provisioning.sh"}}
 }
 }
}

Shell commands

You can run shell commands before or/and after the CloudFormation is being deployed. The commands will be executed in the directory where the blueprints.yml file lives.

Before

Example:

 blueprints:
 - stackname: 'my-lambda-function'
 template: lambda.template
 Capabilities: CAPABILITY_IAM
 before:
 - cd function
 - npm install aws-sdk
 - zip -r nat_gateway.zip nat_gateway.js node_modules/
 - aws s3 cp nat_gateway.zip s3://mybucket/lambda/nat_gateway.zip

and you can even use placeholders:

 blueprints:
 - stackname: 'my-lambda-function'
 template: lambda.template
 Capabilities: CAPABILITY_IAM
 vars:
 bucket: mybucket
 key: 'lambda/nat_gateway.zip'
 parameters:
 # these are the input parameters passed to the cfn template that match the upload location in the custom script below
 S3Bucket: '{var:bucket}'
 S3Key: '{var:key}'
 before:
 - cd function
 - npm install aws-sdk
 - zip -r nat_gateway.zip nat_gateway.js node_modules/
 - aws s3 cp nat_gateway.zip s3://{var:bucket}/{var:key}

After

Similar to before scripts you can define scripts that are being executed after the stack has been deployed. Please note this only work if you’re ‘observing’ the deploying (no if you deployed with ‘–no-observe’ or if you’re stopping the process (e.g. CTRL+C) during the deployment.

The after configuration equals the before configuration with the addition that you have access to the status in the ${STATUS} variable/ (Special status values in addition to the default ones like ‘CREATE_COMPLETE’,… are ‘NO_UPDATES_PERFORMED’ and ‘STACK_GONE’)

Example

 blueprints:
 - stackname: 'my-static-website'
 description: 'Static website hosted in S3'
 template: 'website.template'
 after:
 - 'if [[$STATUS =~ ^(UPDATE|CREATE)_COMPLETE|NO_UPDATES_PERFORMED$]] ; then aws s3 sync --delete content/ s3://www-tst.aoeplay.net/; fi'

Before and after

before or after are being executed in the base directory of the current blueprint (that’s the directory the blueprint’s blueprint.yml file is located at). But you can switch directories in your script. The ${CWD} variable holds the current working directory (the project root) in case you want to switch to that.

When a profile is being used (even if the profile is loaded via the profiles.yml file) the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY variables will be set in the script context, so you can safely call the aws cli tool in the same context the blueprint is being deployed.

In addition to that ${BLUEPRINT} will hold the current blueprint’s name and ${STACKNAME} the current resulting stack name Also ${STATUS} will hold the last status of the stack that has just been deployed (after scripts only).

You can separate the script lines in an array (that will then be concatenated with \n before executing:

 blueprints:
 - stackname: 'my-static-website'
 [...]
 after:
 - 'echo "Line 1"'
 - 'echo "Line 2"'

or you can use the YAML multiline notation:

 blueprints:
 - stackname: 'my-static-website'
 [...]
 after: |
 echo "Line 1"
 echo "Line 2"

AWS Sdk

StackFormation uses the AWS SDK for PHP. You should configure your keys in env vars:

$ export AWS_ACCESS_KEY_ID=INSERT_YOUR_ACCESS_KEY
$ export AWS_SECRET_ACCESS_KEY=INSERT_YOUR_PRIVATE_KEY
$ export AWS_DEFAULT_REGION=eu-west-1

Misc

Use the jq tool to create a simple list of all parameters (almost) ready to paste it in the blueprints.yml

$ cat my.template | jq '.Parameters | keys' | sed 's/",/: \'\'/g' | sed 's/"//g'

Contributing

Your contributions are always welcome!
Please feel free to fork this repository and submit pull request as many you want! If you have any questions please feel free to contact us.

Contributors

	Fabrizio Branca [https://twitter.com/fbrnc]

	Julian Kleinhans [https://github.com/kj187]

	Lee Saferite [https://github.com/LeeSaferite]

	Daniel Niedergesäß [https://github.com/smart-devs]

Index

 _images/kickstart_demo_stacklist.png
04:39 /var/ww/data/aoe/StackFormationProject/Demo

$ bin/stackformation.php stack:list

| Status |
| my-stack | CREATE_COMPLETE |

_images/overview.png
Blueprint
magento{enVENVIRONMENT} build-{env:BUILD}

D 00

merge &
. . . E

“CloudFormation+X” CloudFormation
Template(s) Template
+
Dynamic Parameters
+
Stack Policies
+
Behavior
+

Tags

[|
Stack

magento-prod-build-5

Stack

magento-prod-build-6

HEE
Stack

magento-prod-setup

[|
Stack

magento-stage-build-5

Stack

magento-stage-build-6

HEE
Stack

magento-stage-setup

_images/kickstart_demo_deploy.png
03:39 o

| Key | Value |
4memmgmnneent
Preparing paraneters
Preparing template.
Triggered deployment
-> Polling... (Stack
-

| CREATE_IN_PROGRESS
+

-> Polling.
-

| CREATE_IN_PROGRESS
| CREATE_IN_PROGRESS
| CREATE_COMPLETE

| CREATE_COMPLETE

+

Completed

/var /ww/data/ace/StackFormationProject/Demo
$ bin/stackformation.php deploy my-stack

done.

. done.
of stack 'my-stack’.
Status: CREATE_IN_PROGRESS)

| AWS: :CloudFormation: :Stack | my-stack | User Initiated |

Status: CREATE_COMPLETE)

WaitConditionHandle | MyResourcel | |
WaitConditionHandle | MyResourcel | Resource creation Initiated |
WaitConditionHandle | MyResourcel | |
Stack | my-stack | I

Last Status: CREATE_COMPLETE

| Key | Value |
+

_images/kickstart_demo_ec2list.png
03:23 /var/ww/data/aoe/StackFormationProject/Demo
$ bin/stackformation.php ec2:list

| Instanceld | Imageld | State | SubnetId (3 | PublicIp | PrivateIp | KeyName |

I i-b7 | ami-953b06el | running | subnet- | eu-west-1c | | 172.31.1.16 | StackFormationProjectKickstartKeyPairName |

_static/comment-bright.png

_images/stackformation_200px.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 StackFormation dev-master Documentation

 		
 Getting Started

 		
 Installation/Usage

 		
 Via composer

 		
 Via docker

 		
 Using the phar

 		
 Quickstart

 		
 AWS access keys

 		
 Create a blueprint

 		
 Create a CloudFormation template

 		
 Deploy your stack

 		
 Kickstart a project

 		
 Installation

 		
 Required environment settings

 		
 Short check

 		
 Your first blueprint

 		
 Deploy your stack

 		
 Blueprints

 		
 Structuring your blueprints

 		
 Parameters

 		
 Adding parameters

 		
 Parameter values

 		
 Conditional parameter values

 		
 Wildcards

 		
 Effective stackname

 		
 Reverse blueprint match

 		
 Forcing ENV vars

 		
 Templates

 		
 Template merging

 		
 Prefixed template merging

 		
 Inject Parameters

 		
 Include file content

 		
 Inject raw Json

 		
 Using composer

 		
 Comments

 		
 Port

 		
 Expand strings with {Ref:…}

 		
 Stack references

 		
 User data

 		
 Inject user data

 		
 Stack

 		
 Stackname filter

 		
 Stack policies

 		
 Using stack policies

 		
 Functions

 		
 Fn::FileContent

 		
 Fn::FileContentTrimLines

 		
 Fn::FileContentMinify

 		
 Fn::FileContentUnpretty

 		
 Fn::Split

 		
 File paths

 		
 Relative file paths

 		
 Shell commands

 		
 Before

 		
 After

 		
 Before and after

 		
 AWS Sdk

 		
 Misc

 		
 Contributing

 		
 Contributors

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

